## **Electric Current - Sample Test**

## Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.

- 1. How is current affected if the number of charge carriers decreases?
  - a. The current increases.
  - b. The current decreases.
  - c. The current initially decreases and then is gradually restored.
  - d. The current is not affected.
- A wire carries a steady current of 0.1 A over a period of 20 s. What total charge moves through the wire in this time interval?
   a. 200 C
   b. 20 C
   c. 2 C
   d. 0.005 C
- 3. Which of the following wires would have the *least* resistance, assuming that all of the wires have the same cross-sectional area?
  - a. an iron wire 10 cm in length
- c. a copper wire 10 cm in lengthd. a copper wire 5 cm in length
- b. an iron wire 5 cm in lengthd. a cop4. Which of the following wires would have the *least* resistance?
  - a. an aluminum wire 20 cm in diameter at 40°C
  - b. an aluminum wire 20 cm in diameter at 60°C
  - c. an aluminum wire 40 cm in diameter at 40°C
  - d. an aluminum wire 40 cm in diameter at 60°C
- 5. When compared in a given time interval with other lightbulbs connected to a 120 V circuit, a 60 W lightbulb
  - a. converts the same electrical energy to heat and light as a 40 W lightbulb.
  - b. converts more electrical energy to heat and light than a 100 W lightbulb.
  - c. converts less electrical energy to heat and light than a 40 W lightbulb.
  - d. converts less electrical energy to heat and light than a 100 W lightbulb.
- 6. An electric toaster requires 1100 W at 110 V. What is the resistance of the heating coil?

a.  $3.3 \Omega$  b.  $9.0 \Omega$  c.  $10 \Omega$  d.  $11 \Omega$ 

- 7. Which process will double the power dissipated by a resistor?
  - a. doubling the current while doubling the resistance
  - b. doubling the current and making the resistance half as big
  - c. doubling the current and doubling the potential difference
  - d. doubling the current while making the potential difference half as big
- 8. A high-voltage transmission line carries 1000 A at 700 000 V. What is the maximum power carried in the line?
  - a. 700 MW b. 400 MW c. 100 MW d. 70 MW
- 9. A microwave draws 5.0 A when it is connected to a 120 V outlet. If electrical energy costs \$0.090 per kW•h, what is the cost of running the microwave for exactly 6 h?
  - a. \$2.70 b. \$1.60 c. \$0.72 d. \$0.32
- 10. When electrons move through a metal conductor,
  - a. they move in a straight line through the conductor.
  - b. they move in zigzag patterns because of repeated collisions with the vibrating metal atoms.
  - c. the temperature of the conductor decreases.
  - d. they move at the speed of light in a vacuum.
- 11. A flashlight bulb with a potential difference of 4.5 V across it has a resistance of 8.0  $\Omega$ . How much current is in the bulb filament?
  - a. 36 A b. 9.4 A c. 1.8 A d. 0.56 A

12. If the potential difference across a pair of batteries used to power a flashlight is 6.0 V, what is the potential difference across the flashlight bulb?

a. 3.0 V b. 6.0 V c. 9.0 V d. 12 V

13. A circuit has a continuous path through which charge can flow from a voltage source to a device that uses electrical energy. What is the name of this type of circuit?

a. a short circuit b. a closed circuit c. an open circuit d. a circuit schematic

- 14. Which of the following is the best description of a schematic diagram?
  - a. uses pictures to represent the parts of a circuit
  - b. determines the location of the parts of a circuit
  - c. shows the parts of a circuit and how the parts connect to each other
  - d. shows some of the parts that make up a circuit
- 15. How does the potential difference across the bulb in a flashlight compare with the terminal voltage of the batteries used to power the flashlight?
  - a. The potential difference is greater than the terminal voltage.
  - b. The potential difference is less than the terminal voltage.
  - c. The potential difference is equal to the terminal voltage.
  - d. It cannot be determined unless the internal resistance of the batteries is known.
- 16. Which of the following statements about a battery as a source of electric current is *not* true?
  - a. A battery is a source of emf.
  - b. A battery provides the energy that moves charge.
  - c. The terminal voltage of a battery is equal to its emf.
  - d. The terminal voltage of a battery is the voltage it delivers to the load.
- 17. Three resistors with values of  $4.0 \Omega$ ,  $6.0 \Omega$ , and  $8.0 \Omega$ , respectively, are connected in series. What is their equivalent resistance?
  - a.  $18 \Omega$  b.  $8.0 \Omega$  c.  $6.0 \Omega$  d.  $1.8 \Omega$
- 18. A circuit is composed of resistors wired in series. What is the relationship between the equivalent resistance of the circuit and the resistance of the individual resistors?
  - a. The equivalent resistance is equal to the largest resistance in the circuit.
  - b. The equivalent resistance is greater than the sum of all the resistances in the circuit.
  - c. The equivalent resistance is equal to the sum of the individual resistances.
  - d. The equivalent resistance is less than the smallest resistance in the circuit.
- 19. Three resistors connected in parallel carry currents labeled  $I_1, I_2$ , and  $I_3$ . Which of the following expresses the total current  $I_3$ .
  - t in the combined system?

a. 
$$I_t = I_1 + I_2 + I_3$$
  
b.  $I_t = \left(\frac{1}{I_1} + \frac{1}{I_2} + \frac{1}{I_3}\right)$   
 $I_t = \left(\frac{1}{I_1} + \frac{1}{I_2} + \frac{1}{I_3}\right)^{-1}$   
 $I_t = \left(\frac{1}{I_1} + \frac{1}{I_2} + \frac{1}{I_3}\right)^{-1}$ 

- 20. Two resistors having the same resistance value are wired in parallel. How does the equivalent resistance compare to the resistance value of a single resistor?
  - a. The equivalent resistance is twice the value of a single resistor.
  - b. The equivalent resistance is the same as a single resistor.
  - c. The equivalent resistance is half the value of a single resistor.
  - d. The equivalent resistance is greater than that of a single resistor.
- 21. Three resistors with values of 4.0  $\Omega$ , 6.0  $\Omega$ , and 10.0  $\Omega$  are connected in parallel. What is their equivalent resistance?

a. 
$$20.0 \Omega$$
 b.  $7.3 \Omega$  c.  $6.0 \Omega$  d.  $1.9 \Omega$ 

- 22. In any complex resistance circuit, the voltage across any resistor in the circuit is always
  - a. less than the voltage source. c. equal to the voltage source.
  - b. equal to or less than the voltage source. d. greater than the voltage source.
- 23. The equivalent resistance of a complex circuit is usually determined by
  - a. inspection.
  - b. simplifying the circuit into groups of series and parallel circuits.
  - c. adding and subtracting individual resistances.
  - d. dividing the sum of the individual resistances by the number of resistances.



24. What is the equivalent resistance for the resistors in the figure shown above? a.  $25 \Omega$  b.  $10.0 \Omega$  c.  $7.5 \Omega$  d.  $5.0 \Omega$ 

## Short Answer

25. What is an ohmic material and what would a graph of Voltage vs. Current look like?

## Problem

- 26. What amount of charge moves through an electric fan in 15.1 s if the current through the fan is 1.27 A?
- 27. What is the resistance of a resistor if the potential difference across the resistor is 4.0 V when a current of 10.0 A flows through the resistor?
- 28. A 13.2  $\Omega$  resistor has 0.049 A of current in it. What is the potential difference across the resistor?
- 29. A blow dryer is connected across a 125 V outlet. If the resistance of the blow dryer is 14.3  $\Omega$ , how much power is dissipated in the form of electromagnetic radiation and heat?
- 30. Three resistors with values of 64  $\Omega$ , 135  $\Omega$ , 92  $\Omega$ , respectively, are connected in series. What is their equivalent resistance?
- 31. A current of 0.20 A passes through a  $3.0 \Omega$  resistor. The resistor is connected in series with a 6.0 V battery and an unknown resistor. What is the resistance value of the unknown resistor?
- 32. Four resistors are wired in parallel with a 2.50 V battery. The total circuit current is 1.85 A, and three of the resistors have resistances of  $2.70 \Omega$ ,  $8.20 \Omega$ , and  $12.6 \Omega$ . What is the resistance of the fourth resistor?
- 33. Three resistors are wired in series with a 22.0 V battery. The resistances are 22.5  $\Omega$ , 33.6  $\Omega$ , and 9.9  $\Omega$ . What is the voltage across the 9.9  $\Omega$  resistor?